
Eur. Phys. J. B 12, 47–53 (1999) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. We study the dynamical correlation effects in a one-dimensional Fermion gas with repulsive
delta-function interaction within the quantum version of the self-consistent field approximation of Singwi,
Tosi, Land, and Sjölander [Phys. Rev. 176, 589 (1968)]. The dynamic correlation effects are described by
a frequency dependent local-field correction G(q, ω). There is a corresponding local-field factor J(q, ω) for
the spin-density correlations. We investigate the structure factors, spin-dependent pair-correlation func-
tions, the frequency dependences of G(q, ω) and J(q, ω), and the plasmon dispersion relation within this
formalism. We compare our results with other theoretical approaches, in particular the static version of
the self-consistent field approximation to highlight the importance of dynamical correlations.

PACS. 71.10.Ca Electron gas, Fermi gas – 71.45.Gm Exchange, correlation, dielectric and magnetic func-
tions, plasmons – 73.20.Dx Electron states in low-dimensional structures (superlattices, quantum well
structures and multilayers)

1 Introduction

The model of an one-dimensional (1D) electron gas is of
continuing interest because of its potential applicability to
realistic systems such as semiconductor quantum wires,
conducting organic materials, and newly discovered car-
bon tubules. Inasmuch as the long-range Coulomb forces
influence and determine the ground-state and transport
properties of these systems, the one-dimensional Fermi
gas with a repulsive contact interaction also provides an
useful paradigm. There are several reasons. Firstly, the
exact solution for the ground-state energy has been given
by Yang [1] within the Bethe ansatz approach and nu-
merically calculated by Friesen and Bergersen [2]. Thus,
various approximate methods may be checked against the
exact results. Secondly, the simple form of the interaction
(δ-function in real space) allows us to introduce approxi-
mate schemes which go beyond the mean-field as has been
explored by Nagano and Singwi [3,4]. The study of 1D
electron gas with various interaction laws in different con-
texts has been thoroughly discussed in the literature [5].

The correlation effects not fully described by the mean-
field random-phase approximation (RPA) are accounted
for within the concept of local-field corrections. The self-
consistent field method of Singwi et al. [6]. (STLS) treats
the short-range correlation effects in charged quantum sys-
tems by taking into account the repulsion hole of each
electron. The earlier work of Friesen and Bergersen [2]
and the recent studies of Gold [7,8] have shown that
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the STLS method applied to the 1D electron gas with
δ-function interaction yields reasonable agreement with
the exact ground-state energy up to intermediate coupling
strengths.

In this work we apply the dynamical (or quantum) ver-
sion of the STLS theory to the problem of 1D electron gas
with short-range interaction and investigate the dynami-
cal properties. There are several motivations to study the
effects of dynamical correlations. In recent years the dy-
namical correlation effects have been recognized to play
an important role in describing the many-body proper-
ties of electronic systems. Richardson and Ashcroft [9]
have developed wave vector and frequency dependent
local-field factors for a 3D electron gas using a varia-
tional approach to solve integral equations for the density-
density and spin-density response functions. Takayagani
and Lipparini [10] have solved the Bethe-Goldstone equa-
tion in the particle-hole channel to determine the effec-
tive interaction between the electrons. Among the possi-
ble occurrences where the dynamical correlations become
important are the effective electron-electron interactions
relevant for Coulomb interaction induced superconduc-
tivity, calculation of the plasmon lifetime, and exchange-
correlation potentials in the context of density-functional
theory [11]. The dynamical version of the STLS approx-
imation (qSTLS) has been mainly employed to study
the correlation effects in charged quantum liquids inter-
acting via long-range forces [12–17]. The theory takes
dynamical nature of the Pauli correlation hole into ac-
count and treats the Coulomb correlation hole at a static
level [12,15]. In the present problem the electrons interact
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with a short-range (contact) interaction and it is of inter-
est to compare and contrast the results of the dynamic
STLS theory with the other approaches. We find that
there are significant differences in the ground-state cor-
relation functions and the local-field corrections between
the static and dynamic STLS methods.

The rest of this paper is organized as follows. In the
next section we outline the qSTLS method in application
to 1D electrons with short-range interactions. In Section 3
we present the results of our self-consistent calculations
and discuss the differences between the static and qSTLS
approximations. We conclude with a brief summary in Sec-
tion 4.

2 Model and theory

We consider a system of electrons in 1D interacting via a
contact potential V (r1, r2) = V0 δ(r1−r2), where V0 is the
interaction strength. In terms of the electron mass m and
the density of the particles n, we use the dimensionless
parameter γ = mV0/n to characterize the strength of the
coupling (we take ~ = 1). The Fermi wave vector kF, is
related to the linear density by n = 2kF/π. We calculate
the correlation effects employing the self-consistent field
approximation of Singwi et al. [6]. (STLS) generalized to
include dynamic correlations [12–14] which introduces a
local-field correction to the bare interaction V (q) arising
from the short-range correlations between the electrons.

The derivation leading to the frequency-dependent
local-field factor is similar to that in the static STLS ap-
proximation. The hierarchy of coupled equations satisfied
by the Wigner distribution functions is truncated with
the assumption that the two-particle Wigner distribution
function may be written as a product of one-particle distri-
bution functions and the pair-correlation function [12,13].
The density-density response function without any loss of
generality is given by

χd(q, ω) =
χ0(q, ω)

1− V s
eff(q, ω)χ0(q, ω)

, (1)

where χ0(q, ω) is the zero-temperature dynamic suscepti-
bility of a non-interacting electron gas [18] evaluated on
the imaginary frequency axis

χ0(q, iω) =
m

2πq
ln
∣∣∣∣ω2 + ω2

−
ω2 + ω2

+

∣∣∣∣ , (2)

in which ω± =
∣∣q2/2m± qkF/m

∣∣ are the boundaries of
particle-hole excitation region. Similarly, the spin-density
response function can be written as

χs(q, ω) = − χ0(q, ω)
1− V a

eff(q, ω)χ0(q, ω)
· (3)

In the quantum version of the STLS approximation,
V s

eff(q, ω) and V a
eff(q, ω) are, respectively, the spin-

symmetric and spin-antisymmetric effective dynamic po-
tentials. They are expressed as

V s
eff(q, ω) = V (q)[1−G(q, ω)] , (4)

and

V a
eff(q, ω) = V (q)J(q, ω) , (5)

where G(q, ω) and J(q, ω) are the spin-symmetric
and spin-antisymmetric dynamic local-field factors given
by [12,13,15]

G(q, ω) = − 1
n

∫ ∞
−∞

dk
2π

χ0(q, k;ω)
χ0(q, ω)

V (k)
V (q)

[S(q − k)− 1],

(6)

and

J(q, ω) =
1
n

∫ ∞
−∞

dk
2π

χ0(q, k;ω)
χ0(q, ω)

V (k)
V (q)

[S̃(q − k)− 1] . (7)

In the above expressions the inhomogeneous free-electron
response function

χ0(q, k;ω) = 2
∫ ∞
−∞

dp
2π

f(p+ k/2)− f(p− k/2)
ω − pq/m+ iη

, (8)

has been used, with f(q) being the distribution function
for non-interacting electrons. For k = q, the inhomoge-
neous response function reduces to the familiar homoge-
neous case χ0(q, ω). S(q) and S̃(q) are the static density
and spin-density structure factors. They are related to the
χd(q, ω) and χs(q, ω) through the fluctuation-dissipation
theorem as

S(q) = − 1
nπ

∫ ∞
0

dω χd(q, iω) , (9)

and

S̃(q) =
1
nπ

∫ ∞
0

dωχs(q, iω) , (10)

where we have used the analytic continuation of the re-
sponse function to the complex frequency plane followed
by the Wick rotation of the frequency integral. Using the
definition (Eq. (8)) of χ0(q, k;ω) and calculating it on the
imaginary frequency axis, we obtain

χ0(q, k; iω) =
m

2πq
ln

(
(ω2 + η2 + ω2

qk−)2 − 4ω2η2

(ω2 + η2 + ω2
qk+)2 − 4ω2η2

)
,

(11)

where ωqk± = |qk/2m± qkF/m|. We have introduced η as
a small positive quantity to avoid unphysical divergences.
These coupled set of equations are solved by iterating be-
tween G(q, iω) and S(q), which uses χd(q, ω) and in turn
G(q, iω), until self-consistency is achieved. Similarly, we
iterate between J(q, ω) and S̃(q), which uses χs(q, iω) and
in turn J(q, iω), until self- consistency is attained.

3 Results and discussion

We first discuss the static density and spin-density struc-
ture factors resulting from our self-consistent calculations.
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Fig. 1. The static structure factor S(q) within the qSTLS
(solid), static STLS (dotted), GRPA (dashed), and RPA (dot-
dashed) at (a) γ = 2 and (b) γ = 5.
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Fig. 2. The static spin-density structure factor S̃(q) within the
qSTLS (solid), static STLS (dotted), and RPA (dot-dashed) at
γ = 3.

The calculated results for S(q) are plotted in Figure 1, for
two values of γ. We note that S(q) in the static STLS [7]
and the dynamic STLS approximations mainly differ in
the region around q ∼ 2kF. There are sizable differences
between the RPA and the qSTLS results even for small
coupling strengths. The results for the spin-density struc-
ture factor S̃(q) are shown in Figure 2. We observe that
a peak structure at q = 2kF appears in S̃(q) which is
slightly more pronounced in the qSTLS approximation
than the static STLS. These differences are attributed
to the dynamical correlation effects accounted for in the
qSTLS approximation. The RPA without the local-field
correction for the spin correlations is tantamount to the
non-interacting case, thus do not show such a peak at
q = 2kF. We have used our self-consistently determined
static structure factor S(q) to calculate the ground-state
energy by means of a coupling constant integration. The
ground-state energy evaluated in this manner is similar
to that calculated within the static STLS approximation
[2,7] in the range 0 < γ < 10. The generalized random-
phase approximation (GRPA) of Nagano and Singwi [3]
is based on the perturbation theory which sums exactly a
large class of diagrams. However, GRPA results in a less
satisfactory agreement with the exact ground-state energy.

The probability of finding a particle at a distance r
away from a particle situated at the origin is described by
the spin-symmetric pair-correlation function g(r) which is
the Fourier transform of S(q). In one-dimension the g(r)
can be written in the form

g(r) = 1− 1
nπ

∫ ∞
0

dk cos(kr) [1− S(k)] . (12)

Similarly, the spin-antisymmetric pair-correlation func-
tion ga(r) is expressed as

ga(r) =
1
nπ

∫ ∞
0

dk cos(kr) [1− S̃(k)] . (13)

We show the pair-correlation functions g(r) for γ = 10 in
different theories in Figure 3. It has been shown by Gold [7]
that the pair-correlation function at zero separation g(0),
remains positive for the entire range of coupling strengths
in the static STLS approximation. The qSTLS theory also
yields a positive g(0) for relevant values of γ, but even-
tually becomes negative for γ & 15. We note that the
GRPA performs less satisfactorily than the qSTLS. Since
the range of validity of the STLS (or qSTLS) approxima-
tion is limited to the intermediate coupling regime this
does not pose a serious practical problem for further ap-
plications. From g(r) and ga(r) we can calculate the spin-
dependent electron pair-correlation functions g↑↑(r) and
g↑↓(r) as

g↑↑(r) = g(r) − ga(r) , and g↑↓(r) = g(r) + ga(r) .
(14)

g↑↑(r) and g↑↓(r) describe the parallel and anti-parallel
spin correlations, respectively. The results obtained for
g↑↑(r) and g↑↓(r) are shown in Figure 4 for various val-
ues of γ in different approximations. We find that g↑↑(r)
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Fig. 3. The pair-correlation function g(r) within the qSTLS
(solid), static STLS (dotted), and GRPA (dot-dashed) at γ =
10.
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Fig. 4. The spin-dependent pair-correlation functions g↑↑(r)
and g↑↓(r) obtained from g(r) and ga(r) within the qSTLS for
different γ values. The inset compares the qSTLS and static
STLS approximation results at γ = 3.

remains roughly the same for all γ values with very lit-
tle variation at g↑↑(0). g↑↓(r), on the other hand, shows
greater variance as γ changes. In the inset of Figure 4 we
compare the results of qSTLS and static STLS approaches
and find more structure in g↑↓(r) within the qSTLS ap-
proximation which shows the effects of dynamic correla-
tions. The differences between the static and qSTLS pre-
dictions for the pair-correlation function stem from the
dynamical treatment of the Pauli correlation hole in the
latter approach.

From our self-consistent calculations of the correlation
effects we obtain the spin-symmetric G(q, iω), and spin-
antisymmetric J(q, iω), dynamic local-field factors on the
imaginary frequency axis. Similar to the situation in elec-
tron gas problems with long-range Coulomb interaction
G(q, iω) and J(q, iω) are rather smooth and uninteresting
functions of iω. The real and imaginary parts of G(q, ω)
and J(q, ω) may be obtained from G(q, iω) and J(q, iω)
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Fig. 5. The real (top curves) and imaginary (bottom curves)
parts of the spin-symmetric local-field factor G(q, ω) in the
qSTLS (thick lines) and the GRPA (thin lines) at γ = 1.
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Fig. 6. The real (bottom curves) and imaginary (top curves)
parts of the spin local-field factor J(q, ω) for γ = 1 (thin lines)
and γ = 3 (thick lines) in the qSTLS approximation.

by the analytic continuation iω → ω + iη in equations
(6, 7). We show in Figures 5 and 6 the real and imaginary
parts of G(q, ω) and J(q, ω), respectively, as functions of
the real frequency ω. In Figure 5 we compare the results of
qSTLS and the dynamic theory of Nagano and Singwi [3]
for G(q, ω) at γ = 1 and q = kF. There are certain sim-
ilarities but also marked differences both in the real and
imaginary parts. We depict the frequency dependence of
J(q, ω) within the qSTLS approach in Figure 6 for two val-
ues of γ. The results in their oscillatory behavior resembles
the case of two-dimensional electron gas [15]. Since the
effective electron-electron interaction within the present
theory is defined as V0[1 − G(q, ω)], there appears to be
a possibility to have attractive interactions for a range of
ω values. It would be interesting to pursue this line of
thought for possible superconducting fluctuations in this
system.



E. Demirel and B. Tanatar: Dynamical correlations in the one-dimensional electron gas 51

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
q/kF

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

G
(q

,ω
m

ax
)

Fig. 7. The large frequency limit of the dynamic local-field
factor G(q,∞) (solid lines) and the G(q) of the static STLS
approximation (dashed lines). Curves from bottom to top in-
dicate γ = 1, 3 and 5 respectively.
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Fig. 8. The zero-frequency local-field factor G(q, 0) calculated
within the qSTLS (solid), GRPA (dashed) and static STLS
approximation (dot-dashed).

One can show that for fixed q and large ω, the local-
field factors behave as

lim
ω→∞

G(q, ω) = GSTLS(q) +O
(

1
ω2

)
, (15)

and a similar relation holds for J(q, ω). Thus, ImG(q, ω)
vanishes and ReG(q, ω) tends to the value given by the
static STLS approximation for large ω, as illustrated
in Figure 7. The large frequency approximation G(q,∞)
show an interesting dip around q ≈ 2.5 kF which is ab-
sent in the static STLS. We actually plot G(q, ωmax) at
some large frequency value (but not infinite), thus the
large q limit does not exactly coincide with G(q) of the
static STLS calculation [8]. The near similarity of the con-
stant local-field factor within the static STLS and high-
frequency limit of G(q, ω) within the qSTLS theories, give
further credence to the Friesen and Bergersen [2] and
Gold’s [7] results of ground-state energy.
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Fig. 9. (a) The static susceptibility χd(q) at γ = 5 in the
RPA (solid), static STLS (dotted), and qSTLS with G(q,∞)
(dashed) and G(q, 0) (dot-dashed). (b) The same for the static
spin susceptibility χs(q) at γ = 2.

The zero-frequency limit of the spin-symmetric local-
field factor G(q, 0), is of interest in some practical applica-
tions. In Figure 8 we show the results for G(q, 0) in qSTLS
and Nagano and Singwi’s dynamic theory [3] as well as
the local-field factor in the static STLS approximation
at γ = 5. We note that G(q, 0) has the peculiar behavior
at q = 2kF. One can analytically show using equation (6)
that G(2kF, 0) vanishes, and our numerical calculations
confirm this. The dynamical theory of Nagano and
Singwi [3] also predicts the same behavior, whereas the
static STLS [7] approach with a q-independent local-field
factor completely misses it. Since a similar behavior of
G(q, 0) has been found in quasi-one-dimensional electron
gas with long-range interactions [17], we conclude that
it is the property of 1D systems in general coming from
dynamical considerations, irrespective of the interaction
type. However, there are significant differences between
the GRPA and the qSTLS results for G(q, 0) as Figure 8
illustrates. To show the effect of G(q, 0) in relation
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Fig. 10. (a) The dispersion of the collective modes for den-
sity fluctuations ωd(q) in different theories at γ = 10. The solid,
dashed, dot-dashed, and dotted lines are for the qSTLS approx-
imation, the static STLS approximation, GRPA, and RPA, re-
spectively. (b) The same for collective spin-density modes at
γ = 3. The dotted and dashed lines indicate qSTLS and static
STLS approximations, respectively. The shaded regions in both
cases indicate the particle-hole excitation continuum.

to the static G(q) and the high frequency limit
G(q,∞), we plot the static density and spin sus-
ceptibilities χd(q) and χs(q), respectively, in Fig-
ure 9. The static susceptibilities are calculated
by taking the zero-frequency limit of equations
(1, 3). We find that the STLS and qSTLS with G(q,∞)
results are very near as equation (15) suggests. However,
χd(q) calculated with G(q, 0) lies somewhere between
the above approximations and the RPA, showing a less
pronounced peak at q = 2 kF. It has been argued [12] that
when G(q, 0) exceeds unity, the systems becomes unstable
towards the formation of a charge density wave (CDW).
We find no evidence for a CDW instability for the range
of coupling strengths (0 < γ . 15) we investigate.
Qualitatively similar conclusions may be drawn for the

static spin susceptibility χs(q) as shown in Figure 9b.
These predictions for the static response functions as
well as other ground-state properties may in principle be
tested by Quantum Monte-Carlo methods [19] when they
are available.

Using the fluctuation dissipation theorem S(q, ω) =
−1/(nπ) Imχ(q, ω), we have also calculated the dynamic
structure factor S(q, ω) within the present approach. The
dynamic structure factor resembles that calculated by
Nagano and Singwi [3,4] in their GRPA with some dif-
ferences. Most noteworthy of these is that the S(q, ω) be-
comes slightly negative for ω > ω+ (the upper edge of
the particle-hole continuum), indicating the violation of
causality. Although for small values of γ the negative part
in S(q, ω) is barely noticeable, it becomes serious for large
coupling strengths. This is a common shortcoming of the
qSTLS theory as seen in various other applications [13,15].
In the case of the dynamic spin structure factor S̃(q, ω),
the results of qSTLS are rather similar to that calculated
within the static STLS approximation.

Finally, we consider the collective excitations in the
system. The plasmon excitation spectrum can be obtained
from the poles of the response function. The dispersion
of the collective modes for density fluctuations ωd(q) are
obtained by solving the equation

1− V0[1−G(q, ωd)]χ0(q, ωd) = 0 . (16)

In the RPA and static STLS approximation the local-
field correction does not depend on q and ω. Therefore,
within these approaches, equating the denominator of the
response functions to zero we can obtain the analytic form
of the dispersion of the collective modes for density fluc-
tuations ωd(q) as

ωd(q)
EF

=
[
ω2

+Ad(q)− ω2
−

Ad(q)− 1

]1/2

, (17)

where

Ad(q) = exp [π2q/(2kFγ[1−G(γ)])] . (18)

In the qSTLS and GRPA of Nagano and Singwi [3], the
local-field corrections are complex and frequency depen-
dent. In these cases we cannot solve equation (16) analyt-
ically for ωd(q). We have solved this equation for qSTLS
and GRPA numerically and compared our results with the
RPA and static STLS approximations. In Figure 10a we
show ωd(q) at γ = 10 in various approximations. The RPA
without the local-field corrections yields a well-defined
plasmon dispersion which is largely above the particle-
hole excitation region. In the static STLS approximation,
on the other hand, the plasmons are suppressed and ωd(q)
stays very close to ω+. We observe that the approximation
schemes which take the dynamical correlations into ac-
count, namely the qSTLS approach and GRPA of Nagano
and Singwi [3] produce plasmon dispersion somewhere be-
tween the RPA and static STLS. This result is interesting
since the qSTLS theory as applied to long-range Coulomb
problems [2,6,15] typically predicts plasmon curves be-
low the static STLS results. As the experimentally mea-
sured [20] plasmon dispersions in quasi-one-dimensional
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electron systems are close to the RPA curve, we believe
that our results may have some relevance [21]. Das Sarma
and Hwang [21] argue that because experimental results
are readily explained by the RPA, local-field corrections
do not exist in 1D electron systems. Our calculations indi-
cate that if dynamical correlations are taken into account,
it would be possible to preserve the notion of local-field
corrections. For small values of γ the plasmon dispersion
curves in all approximations are very close to each other,
but we have found similar behavior of ωd(q) for other val-
ues of γ we have examined. In a similar vein, we also
calculate the collective spin excitations ωs(q) by solving

1− V0J(q, ωs)χ0(q, ωs) = 0 . (19)

Figure 10b shows the dispersion of collective spin-density
modes within the static STLS and present dynamical
qSTLS approximations for the coupling strength γ = 3.
We find that ωs(q) within the dynamical approach is much
closer to the lower edge of the particle-hole continuum
than the results of static STLS. This seems to agree with
the experimental observation of intrasubband spin-density
excitations by Schüller et al. [22].

In view of the above results, we compare and contrast
the some of the main features of static and qSTLS ap-
proaches. Both approximation schemes provide a reason-
able estimate for the ground-state energy and therefore
pressure and compressibility in comparison with the exact
results [1–3]. There are noteworthy differences between the
predictions of the two approaches when the ground-state
correlation functions are considered. The dynamical treat-
ment of the correlation effects described by G(q, ω) and
J(q, ω) indicate more structure. The static susceptibility
function χd(q) reflects the significance of using inherently
frequency dependent G(q, ω → 0). The wave vector and
frequency dependent local-fields are also expected to in-
troduce marked differences in quantities like effective in-
teractions, and quasi-particle properties (self-energy, etc.)
of the 1D electron gas. We note, however, that the dynam-
ical correlations included in the present scheme are only
approximate (i.e. only the Pauli correlation hole is taken
into account), thus various deficiencies may be attributed
to this incompleteness.

4 Summary

In summary, we have studied the dynamical correlation
effects in a 1D electron gas with short-range interaction
within the dynamical STLS theory. The wave vector and
frequency dependent local field corrections are useful con-
cepts embodying these correlation effects. We have found
that the dynamical correlations give rise to a number of
different predictions in the various physical quantities of
interest. The static quantities such as the static structure
factor and pair-correlation function and dynamic quan-
tities like the plasmon dispersion reflect the importance
of dynamical correlations. In particular, the plasmon

dispersion is not as heavily suppressed as in the static
STLS approach. The dynamical correlations tend to pro-
duce more structure in the ground-state correlation func-
tions. As the study of one-dimensional electron gas prob-
lems including exchange-correlation effects is gaining more
and more attention in recent years our calculations em-
phasizing the dynamical correlation effects should provide
a complementary viewpoint.
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